Consensus Clustering with Robust Evidence Accumulation
نویسندگان
چکیده
Consensus clustering methodologies combine a set of partitions on the clustering ensemble providing a consensus partition. One of the drawbacks of the standard combination algorithms is that all the partitions of the ensemble have the same weight on the aggregation process. By making a differentiation among the partitions the quality of the consensus could be improved. In this paper we propose a novel formulation that tries to find a median-partition for the clustering ensemble process based on the evidence accumulation framework, but including a weighting mechanism that allows to differentiate the importance of the partitions of the ensemble in order to become more robust to noisy ensembles. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.
منابع مشابه
انتخاب خوشههای اولیه به کمک الگوریتمهای هوشمند برای مشارکت در خوشهبندی ترکیبی
Most of the recent studies have tried to create diversity in primary results and then applied a consensus function over all the obtained results to combine the weak partitions. In this paper a clustering ensemble method is proposed which is based on a subset of primary clusters. The main idea behind this method is using more stable clusters in the ensemble. The stability is applied as a goodnes...
متن کاملخوشهبندی ترکیبی مبتنی بر زیرمجموعهای از خوشههای اولیه
Most of the recent studies have tried to create diversity in primary results and then applied a consensus function over all the obtained results to combine the weak partitions. In this paper a clustering ensemble method is proposed which is based on a subset of primary clusters. The main idea behind this method is using more stable clusters in the ensemble. The stability is applied as a goodnes...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملEvidence Accumulation Clustering using Pairwise Constraints
Recent work on constrained data clustering have shown that the incorporation of pairwise constraints, such as must-link and cannot-link constraints, increases the accuracy of single run data clustering methods. It was also shown that the quality of a consensus partition, resulting from the combination of multiple data partitions, is usually superior than the quality of the partitions produced b...
متن کاملA new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013